- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bundy, Kevin_A (1)
-
Buzzo, Maria_Luisa (1)
-
Danieli, Shany (1)
-
Gannon, Jonah_S (1)
-
Jarrett, T_H (1)
-
Keim, Michael_A (1)
-
Laine, Seppo (1)
-
Romanowsky, Aaron_J (1)
-
Shen, Zili (1)
-
Tang, Yimeng (1)
-
van_Dokkum, Pieter_G (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract NGC 1052-DF2 and -DF4 are two ultradiffuse galaxies that have been reported as deficient in dark matter and associated with the same galaxy group. Recent findings suggest that DF2 and DF4 are part of a large linear substructure of dwarf galaxies that could have been formed from a high-velocity head-on encounter of two gas-rich galaxies, known as a “bullet dwarf” collision. Based on new observations from the Hubble Space Telescope, combined with existing imaging from theuband to mid-infrared, we test the bullet dwarf scenario by studying the morphologies and stellar populations of the trail dwarfs. We find no significant morphological differences between the trail dwarfs and other dwarfs in the group, while for both populations, their photometric major axes unexpectedly align parallel with the trail. We find that the trail dwarfs have significantly older ages and higher metallicities than the comparison sample, supporting the distinctiveness of the trail. These observations provide key constraints for any formation model, and we argue that they are currently best explained by the bullet dwarf collision scenario, with additional strong tests anticipated with future observations.more » « less
An official website of the United States government
